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Image encryption is an effective method to protect images or videos by transferring them into unrecognizable
formats for different security purposes. To improve the security level of bit-plane decomposition based encryp-
tion approaches, this paper introduces a new image encryption algorithm by using a combination of parametric
bit-plane decomposition along with bit-plane shuffling and resizing, pixel scrambling and data mapping. The al-
gorithm utilizes the Fibonacci P-code for image bit-plane decomposition and the 2D P-Fibonacci transform for
image encryption because they are parameter dependent. Any new or existing method can be used for shuffling
the order of the bit-planes. Simulation analysis and comparisons are provided to demonstrate the algorithm's
performance for image encryption. Security analysis shows the algorithm's ability against several common at-
tacks. The algorithm can be used to encrypt images, biometrics and videos.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

With the explosive growth in wired and wireless digital commu-
nication and ubiquitous internet multimedia services, enormous and
diverse technologies are available to individuals all over the world
to create, distribute, and access images and videos. Providing security
for these images and videos containing proprietary or private infor-
mation becomes an important issue for individuals, business and
governments. Image encryption is an effective approach [1] to protect
images or videos by transforming them into unrecognizable formats
such that unauthorized users have difficulty decoding the encrypted
objects. Examples of the many applications requiring robust security
methods includes preserving privacy for medical images in clinical
applications, enforcing copyright protection for design graphs, images
and videos for commercial purposes, as well as providing security for
personal identification via fingerprinting or iris matching and for
video monitoring in homeland security applications.

Images or videos can be partially or fully encrypted by using dif-
ferent technologies in the spatial domain or the frequency domain.
Image/video encryption in the frequency domain is mainly based on
the Discrete Cosine Transform (DCT) [2], Fresnel Transform (FrT)
[3,4] or Fractional Fourier Transform (FrFT) [5–7]. These algorithms
attempt to scramble or encrypt the transform coefficients or blocks.

Image/video encryption in the spatial domain can protect images
or videos with a desired level of security while providing a high
level of quality. Encryption algorithms in the spatial domain are based

on scrambling image/video pixels or blocks using different technologies.
One straightforward method is the naïve encryption algorithm [8]. This
scheme considers the image or video as a data sequence or stream. It
scrambles or encrypts part or the entire sequence or data stream using
different techniques. Data Encryption Standard (DES) [9] and Advanced
Encryption Standard (AES) [10] are two examples of thismethod. Never-
theless, this method requires significant computational resources [11]
and has the worst error resilience performance [12].

Manyencryption schemes are based on chaos theory since the chaot-
ic maps or systems can generate random noise-like sequences iterative-
ly for given initial conditions and parameters [13–18]. However, their
resulting sequences are real numberswhich need to transform into inte-
ger or binary sequences according to additional conditions or thresholds
for data encryption purposes, requiring extra computation cost.

Recursive sequences have been applied to image encryption recently
because they directly generate integer sequences for specific parameters
or keys. These recursive sequences include the Fibonacci numbers
[19,20]. However, these approaches provide a low level of security due
to the lack of security keys or the small key space. To improve the effi-
ciency of the encryption process and the security level of the encrypted
objects, our preliminary work resulted in several image encryption
algorithms using different recursive sequences such as the P-Fibonacci
sequence [21] and P-recursive sequence [22]. These algorithms are
only permutation based methods which are known to be vulnerable
for plaintext attacks [23]. To achieve higher levels of security, an effec-
tive solution is to change image pixel values while scrambling image
pixels or blocks using different techniques [24].

Another interesting encryption approach in the spatial domain is
based on image bit-plane decomposition. This method first decomposes
images into their binary bit-planes. It then encrypts bit-planes using
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different technologies, and combines all the encrypted bit-planes to ob-
tain the encrypted images. Recently, a bit-plane encryption algorithm
using exclusive-OR operations (BPE-XOR) was presented for an optical
system [25]. Later, a selective bit-plane encryption scheme using the
AES algorithm (SBE-AES)was developed for image encryption inmobile
environments [26]. To reduce the computational workload, another se-
lective bit-plane encryption algorithm using the least significant bit-
plane of images (SBE-LBP) was proposed to encrypt images [27].

These bit-plane decomposition based encryption schemes havemade
contributions for their specific applications. However, they have some se-
curity weaknesses: (1) they are based on traditional image bit-plane de-
composition. From a cryptanalysis point of view, this decomposition
method has low level of security because the number of its decomposed
bit-planes and the content of each bit-plane for a specific image arefixed.
For example, a grayscale image with gray levels 0–255 can only be
decomposed into eight bit-planes. The contents in each bit-plane are
fixed for the same image. As a result, the attacker can easy to predict
the decomposed results. (2) The XOR operation and selective bit-
plane encryption schemes have been shown to be vulnerable to a low
computational cost attack [28].

Benefited from the recursive sequence based encryption algo-
rithms, this paper introduces a new image encryption algorithm in
order to enhance the security of the bit-plane decomposition based
encryption approaches. The new algorithm combines the Fibonacci P-
code bit-plane decomposition with the newly introduced P-Fibonacci
transforms. It decomposes the input images into the Fibonacci P-code
bit-planes, shuffles the order of bit-planes, resizes the bit-planes
based on the 2D P-Fibonacci transforms, encrypts all bit-planes one by
one using the 2D Fibonacci transform, combines all encrypted bit-
planes, and then maps the image data back into the original data
range of the input images to obtain thefinal resulting encrypted images.
The deep analysis and comparison demonstrate the new algorithm's
encryption performance. A comprehensive cryptanalysis is provided
to address the algorithm's security issues. The basic flowgraph of the al-
gorithm is shown in Fig. 1.

The rest of this paper is organized as follows: Section 2 will intro-
duce two P-Fibonacci transforms which will be used for the new en-
cryption algorithm presented in Section 4. Section 3 will present the
Fibonacci P-code bit-plane decomposition. Section 5will provide sever-
al simulation examples to show the performance of the new algorithm
for image encryption. A cryptanalysis of the encryption algorithm will
be addressed in Section 6. Conclusions will be drawn in Section 7.

2. P-Fibonacci transforms

In this section, we introduce two P-Fibonacci transforms. One is
the 1D P-Fibonacci transform which is used to generate a permuta-
tion sequence of an input sequence. The other is the 2D P-Fibonacci
transform which encrypts 2D/3D images by scrambling image pixel
locations.

2.1. P-Fibonacci sequence

Here, we review the definitions and some properties of the P-
Fibonacci sequence [29].

Definition 2.1. The P-Fibonacci sequence is a recursive sequence
defined by,

Fp ið Þ ¼
0 ib0
1 i ¼ 0
Fp i−1ð Þ þ Fp i−p−1ð Þ i > 0

8<
: ð1Þ

where i is a position index of the sequence and a non-negative integer p
is a distance parameter.

Based on the definition in Eq. (1), the P-Fibonacci sequence
changes with different p values. Some examples are given in Table 1.
Note that the P-Fibonacci sequence can derive the power of two series
(p=0) and traditional Fibonacci number (p=1).

Here is a list of properties of the P-Fibonacci sequence [30].

Xn−1

i¼0

Fp ið Þ ¼ Fp nþ pð Þ−1 ð2Þ

Xn−1

i¼n−p

Fp ið Þ ¼ Fp nþ pð Þ; n≥p ð3Þ

Fp nð Þ ¼ p
0

� �
þ n−p

1

� �
þ n−2p

2

� �
þ…þ mþ r

m

� �
ð4Þ

where n=(p+1)m+r

2.2. 1D P-Fibonacci transform

Definition 2.2. Let fp(i) and fp(i+1) be two consecutive elements of
the P-Fibonacci sequence defined in Eq. (1). The following transfor-
mation is called the 1D P-Fibonacci transform.

T1
T2
…
TN

0
BB@

1
CCA ¼ f p ið Þ þ ε

� � 1
2
…
N

0
BB@

1
CCAmodf p iþ 1ð Þ ð5Þ

where fp(i)+εb fp(i+1), N= fp(i+1)−1, the non-negative integer i
is the index location of the P-Fibonacci sequence. The constant ε is a
minimal integer offset such that the greatest common divisor of fp
(i)+ε and fp(i+1) is one.

Fig. 1. The basic flow graph of the new encryption algorithm where PD is the decomposition parameter and PE is the parameter for encryption.

Table 1
P-Fibonacci sequences with different p values.

P i

0 1 2 3 4 5 6 7 8 –

0 1 2 4 8 16 32 64 128 256 –

1 1 1 2 3 5 8 13 21 34 –

2 1 1 1 2 3 4 6 9 13 –

3 1 1 1 1 2 3 4 5 7 –

4 1 1 1 1 1 2 3 4 5 –

– –

∞ 1 1 1 1 1 1 1 1 1 –
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Both constraints are important for this transform. The first one
fp(i)+εb fp(i+1) is a limitation for choosing the minimal offset ε.
The second one N= fp(i+1)−1 specifies the maximum value of the
input sequence. Otherwise, the input sequence has to be resized to
meet this condition. For example, we assume p=2 and the input se-
quence in Eq. (5) is (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), thus N=10. Applying
p=2 to Eq. (1) generates a P-Fibonacci sequence 1, 1, 1, 2, 3, 4, 6, 9,
13, 19…, then select f2(i+1)=13 and f2(i)=9. To meet the second
constraint in Eq. (5), namely, N= fp(i+1)−1=12, the input se-
quence has to be resized to (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). Using
Eq. (5) generates an output sequence (9, 5, 1, 10, 6, 2, 11, 7, 3, 12, 8,
4), which is a permutation of the input sequence.

Moreover, the 1D P-Fibonacci transform is periodic since it con-
tains a modulo operation. The periodic property of this type of matrix
transforms was discussed mathematically [31].

Based on Eq. (5), a sequence (1, 2, …, N) can be transformed into
its permutation sequence (T1, T2, …, TN). The output of the 1D P-
Fibonacci transform changes with different parameter p values. For
instance, if the input sequence is (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
the output sequence will be (8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5) for
p=1, and (9, 5, 1, 10, 6, 2, 11, 7, 3, 12, 8, 4) for p=2; if the input
sequence is (1, 2, 3, 4, 5, 6, 7, 8), the output is (5, 1, 6, 2, 7, 3, 8, 4)
for p=2.

2.3. 2D P-Fibonacci transforms

Definition 2.3. Let A be a 2D image with size M×N, Cr and Cc be the
row and column coefficient matrices respectively. The following
transformation is called the 2D P-Fibonacci transform:

E ¼ CrACc ð6Þ

where E is the encrypted image and

Cr u; vð Þ ¼ 1 for u; Tuð Þ
0 else

andCc x; yð Þ ¼ 1 for Ty; y
� �

0 else

((

where Tu and Ty are obtained from Eq. (5), and 1≤u, v≤M, 1≤x,
y≤N.

Additionally, the 1D P-Fibonacci transform is a special case of
the 2D P-Fibonacci transform. When A is a 1D matrix, A=(1, 2, …,
N)T, the 1D P-Fibonacci transform can be represented in another
format,

T1
T2
…
TN

0
BB@

1
CCA ¼ Cr

1
2
…
N

0
BB@

1
CCA ð7Þ

where Cr is the row coefficient matrix defined in Eq. (6).
The 2D P-Fibonacci transform can be used to encrypt the 2D and

3D images such as grayscale images, biometrics, color images and
medical images. Based on Definition 2.3, to encrypt an M×N 2D
image, the row coefficient matrix Cr is an M×M matrix, and the
column coefficient matrix Cc is an N×N matrix. Note that the orig-
inal image should be resized such that the row and column sizes
meet the Fibonacci transform to generate the permutated row
and column sequences and then their corresponding coefficient
matrices.

For example, for an input image with size 8×12 and p=2, the row
and column coefficient matrices of the 2D P-Fibonacci transform will be,

Cr ¼

0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
Cc ¼

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Definition 2.4. Let E be a 2D encrypted image, Cr−1 and Cc
−1 be inverse

matrices of Cr and Cc defined in Definition 2.3 respectively. The follow-
ing transformation is called the inverse 2D P-Fibonacci transform:

R ¼ C−1
r EC−1

c ð8Þ

where R is the reconstructed image.
Similarly, the inverse 1D P-Fibonacci transform can be also defined

by,

1
2
…
N

0
BB@

1
CCA ¼ C−1

r

T1
T2
…
TN

0
BB@

1
CCA ð9Þ

This give a simple and effective way to reconstruct the original
input sequence for the 1D P-Fibonacci transform.

In image decryption process, the user simply applies the inverse
2D P-Fibonacci transform one time to reconstruct the original images.

3. Fibonacci P-code bit-plane decomposition

In this section, we review the Fibonacci P-code bit-plane decompo-
sition. This paper will investigate its application in image encryption.
The term “grayscale image” refers to grayscale image with gray levels
within 0–255 in the rest of this paper.

3.1. Fibonacci P-code

Definition 3.1. The non-negative decimal number D can be repre-
sented by the following form of the base-2 polynomial.

D ¼
Xn−1

i¼0

ai2
i ¼ a02

0 þ a12
1 þ…þ an−12

n−1 ð10Þ

The binary code (an−1, …, a1, a0) is the binary representation of
the non-negative decimal number D.

A non-negative decimal number can be represented by a binary
code sequence based on Eq. (10). This concept can be extended to
the Fibonacci P-code since the power of two series is a special case
of the P-Fibonacci sequence. Therefore, the definition of Fibonacci P-
code is given below.

Definition 3.2. A non-negative decimal number D can be represented
by the following format:

D ¼
Xn−1

i¼0

cif p ið Þ ¼ c0f p 0ð Þ þ c1f p 1ð Þ þ…þ cn−1f p n−1ð Þ ð11Þ
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where n and p are non-negative integers, i=0, 1, …, n−1, ci∈(0, 1),
fp(i) is the ith element of the P-Fibonacci sequence with a specific
p value in Eq. (1). The coefficient sequence (cn−1, …, c1, c0) is called
the Fibonacci P-code of D, namely,

D ¼ cn−1;…; c1; c0ð Þp ð12Þ

where p is the distance parameter of the P-Fibonacci sequence in
Eq. (1).

The Fibonacci P-code of a specific decimal number will change for
different p values. This is because the P-Fibonacci sequence will be
different when the p value changes. However, for a given p value,
the Fibonacci P-code of a specific decimal number is not unique
either.

For example, if D=30 and p=3, i.e. D=(30)p=3, using Eq. (1)
would yield a P-Fibonacci sequence with 12 elements. Each element
serves as a weight in the Fibonacci P-code. The decimal number 30

can be represented by different Fibonacci P-codes with 12 bits as
shown in Table 2.

In order to obtain a unique Fibonacci P-code for each non-negative
decimal number, several different rules or constraints were presented
[29,32,33]. The users have flexibility to choose one of them. In this
paper, we select the constraints presented in [29], namely

D ¼ f p ið Þ þ s ð13Þ

Where the fp(i) is the ith element of the P-Fibonacci sequence with
a specific p value in Eq. (1), 0≤ ibn, and a non-negative decimal num-
ber s is a reminder, 0≤sb fp(i−p).

Based on the constraints in Eq. (13), for D=30 and p=3, its Fibo-
nacci P-code is 30=(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)3. Note that there are
at least p 0's between two consecutive 1's in the Fibonacci P-code of
any non-negative decimal number after applying the constraints in
Eq. (13).

3.2. Fibonacci P-code bit-plane decomposition

A grayscale image can be decomposed into eight 1-bit binary bit-
planes [34]. This traditional bit-plane decomposition is widely used
in image compression and enhancement. However, its decomposition
results and the number of bit-planes are unchangeable for a specific
grayscale image and easy to predict. This is not conducive for image
encryption.

Table 2
Different Fibonacci p-codes of 30 for p=3.

f3(i) 26 19 14 10 7 5 4 3 2 1 1 1

1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0

Fibonacci p-codes 0 1 0 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0 0 0
–

Original image Bit-plane 14 Bit-plane 13 Bit-plane 12 

Bit-plane 11 Bit-plane 10 Bit-plane 9 Bit-plane 8 

Bit-plane 7 Bit-plane 6 Bit-plane 5 Bit-plane 4 

Bit-plane 3 Bit-plane 2 Bit-plane 1 Bit-plane 0 

Fig. 2. Fibonacci P-code bit-plane decomposition of the grayscale Lena image, p=2.
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For a given p value, each non-negative decimal number has a
unique Fibonacci P-code. With the same concept of the traditional
bit-plane decomposition, an image can be also decomposed into sev-
eral Fibonacci P-code bit-planes. Moreover, the traditional bit-plane
decomposition is a special case of the Fibonacci p-code bit-plane de-
composition because the P-Fibonacci sequence becomes the power
of two series when p=0.

The number of Fibonacci P-code bit-planes nB depends on the
maximum value of images Imax. In order to have the decomposition
method works over all p values, we introduce the following rules.
If p≤ Imax, nB is calculated from Imax; Otherwise, if p> Imax, nB is
calculated by p values. This means that for the latter case, the
number of Fibonacci P-code bit-planes is only determined by the
p value.

For a specific grayscale image, the results of the Fibonacci P-code
bit-plane decomposition are parameter dependent. The number of
the Fibonacci P-code bit-planes nB changes with parameter p values.
For instance, for a grayscale image, Imax=255. Therefore, for p=2,
nB=15, and for p=3, nB=19. Fig. 2 gives an example of a grayscale
image decomposed using the Fibonacci P-code bit-plane decomposi-
tion with p=2.

Moreover, the contents of the Fibonacci P-code bit-planes are dif-
ferent based on different p values. These advantages make the Fibo-
nacci P-code bit-plane decomposition well suitable for image
encryption. Note that the maximum value of medical images could
be greater than 255 so the presented decomposition approach will
also work for other types of images.

4. New image encryption algorithm

In this section, we introduce a new image encryption algorithm
using the P-Fibonacci transforms and Fibonacci P-code bit-plane

decomposition, called the P-Fibonacci Encryption (PFE) algorithm. It
can be used to encrypt images biometrics, and videos.

The new PFE algorithm shown in Fig. 3 contains five processes:
image decomposition, bit-plane shuffling, bit-plane resizing, bit-
plane encryption and data mapping processes. The algorithm decom-
poses the original image into its Fibonacci P-code bit-planes, shuffles
the order of all bit-planes, resizes bit-planes based on the size of 2D
P-Fibonacci transforms, encrypts the all bit-planes one by one using
2D P-Fibonacci transform, combines all encrypted bit-planes using
binary code definition in Eq. (10) and then map the image data
back into the original image data range to generate the final resulting
encrypted image.

Let {X0, X1,…, XL−1}, X0bX1b…bXL−1, denote all discrete intensity
levels in an input image I(m, n), the datamapping function is defined by,

E m;nð Þ ¼ k for I m;nð Þ ¼ Xk ð14Þ

where E(m, n) is the output encrypted image, k=0, 1, …, L−1.
The Fibonacci P-code and P-Fibonacci transform will be different

when parameter p changes. Both image decomposition and encryp-
tion processes are parameter dependent. The parameter p for both
decomposition process (called PD) and encryption process (called
PE) can act as security keys for the new PFE algorithm. The users
have flexibility to choose the same p value for both processes, i.e.
PD=PE, or select the different p values for each process, namely
PD≠PE. They can also select different PE values for each bit-plane
which helps to achieve a higher level of security but also increases
computational complexity.

The image resizing process helps to improve the security level of
the PFE algorithm because it makes it difficult for an attacker to de-
code the encrypted images. The users have flexibility to choose any
existing method to perform the shuffling process. The data mapping
process changes and spreads image data while keeping the encrypted
images within the same data range of the original images.

Except for image resizing process, other four processes in the
new PFE algorithm are parameter dependent. Its security keys consist
of the parameters in these four processes, namely (1) PD for image de-
composition, (2) security key PS for bit-plane shuffling, (3) PE for bit-
plane encryption, and (4) the pixel value array PM for data mapping.

To recover the original image from the encrypted image, the au-
thorized users will be provided the combination of the security
keys and the image resizing method. The decryption process of
the new PFE algorithm first maps encrypted image data back into
its original range, and then decomposes the image into its binary
bit-planes which are the Fibonacci P-code bit-planes generated in
the encryption process, reverts the order of all bit-planes back to
their original order, decrypts all bit-planes one by one using the
2D Fibonacci transform, resizes all bit-planes back to their original,
and combines all decrypted bit-planes to obtain the reconstructed
image.

5. Experimental results

The PFE algorithm has been successfully applied to more than fifty
images, including grayscale images, biometrics, color images, and
medical images such as Magnetic Resonance Images (MRIs) and Com-
puter Tomography (CT) images. To show encryption performance of
the PFE algorithm, we provide several illustrative examples of image
encryption in this section.

In all simulation results obtained by the PFE algorithm in the rest
of this paper, we use the same security key PE for all bit-planes and
simply reverse the order of the Fibonacci P-code bit-planes in the
shuffling process. The random numbers are added in the padding re-
gion in the image resizing process. Of course, the users have flexibility
to use other methods to shuffle the order of the bit-planes and to
resize the original images.

Original 2D image Security Keys

Shuffle the order of 
all bitplanes

Resize bitplanes

2D P-Fibonacci 
Transform

Combine bitplanes 
using equation (11) 

Encrypted 2D image 

Decompose into 
Fibonacci P-code 

Bitplanes

Mapping data back 
to the range of the 

original image

PD

PE

PS

PM

Fig. 3. The block diagram of the new PFE algorithm.

598 Y. Zhou et al. / Optics Communications 285 (2012) 594–608



The structural similarity (SSIM) index is a quantitative assessment
method for measuring the similarity between two images [35]. The
SSIM is used to quantitatively evaluate the similarity between the
reconstructed and original images to demonstrate whether the origi-
nal images are completely reconstructed or not. A value 1 of the SSIM
index indicates that two measured images are identical. The Matlab
code of the SSIM is obtained from the author webpage [36]. We sim-
ply use its default setting to measure the images.

Fig. 4 gives an illustrative example of a grayscale image encrypted
by the PFE algorithm with large values of the security keys, PD=32
and PE=300. The results show that images changes in different en-
cryption and decryption stages. The encrypted image shown in
Fig. 4(d) is visually different from the original image shown in Fig. 4
(a). The original images are completely reconstructed because the
reconstructed image shown in Fig. 4(f) is visually the same as the
original one and the SSIM value 1 confirms that the two of them are
identical.

Fig. 5 provides four encryption results to show that the new PFE
algorithm has capability of protecting different types of images such
as grayscale image, MR images, CT images and fingerprints. All these
images are encrypted by the PFE algorithm with PD=10 and
PE=15. The encrypted images are visually close to noise images.
These show the excellent encryption performance of the PFE
algorithm. All the reconstructed images and their SSIM=1 demon-
strate that the original images are perfectly reconstructed.

The 3D images such as color images and 3D medical images contain
several 2D data matrices called 2D components. Color images, for exam-
ple, contain three color planes. Each color plane is a 2D component. In this
manner, the 3D images can be considered as the combination of several
2D images. The 3D image encryption can be accomplished by encrypting
all its 2D components one by one. The users have flexibility to choose the

same security keys for all 2D components or different security keys for
each of them.

Fig. 6 gives an descriptive example of color image encryption
using the PFE algorithm with the security keys: PD=10 and PE=20.
The encrypted image shown in Fig. 6(d) visually looks like a noise
image. The results also demonstrate the PFE algorithm's capability
of encrypting 3D images. The reconstructed image shown in Fig. 6
(f) and its SSIM value further verify that the original image is also
completely reconstructed.

6. Security analysis

Security is important not only for the encrypted objects but also
for the encryption algorithms themselves. In this section, we discuss
some security issues of the new PFE algorithm such as histogram
and correlation analysis, key sensitivity test, security key space as
well as several common attacks such as brute force attacks, noise at-
tacks, and data loss attacks. Eight images with different sizes shown
in Fig. 7 will be used as test images in this section.

6.1. Histogram analysis

An image histogram is a graphic representation of the pixel inten-
sity distribution of an image. To overcome statistic attacks, the
encrypted image should have a histogram with random behavior
and uniform distribution [37,38].

Fig. 8 shows an example of image encryption using the new PFE
algorithm. The encrypted image and its histogram are completely dif-
ferent from the original image. The encrypted image visually looks
like a noise image. Its histogram has nearly uniform distribution
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Fig. 4. Grayscale image encryption using the PFE algorithm, PD=32 and PE=300. (a) The original image; (b) the resized image; (c) the encrypted image before the data mapping;
(d) the final encrypted image; (e) the reconstructed image without image resizing; (f) the final reconstructed image.
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which changes with different security keys. These demonstrate that
the PFE algorithm has capability of withstanding the statistic attacks.

Moreover, the reconstructed image shown in Fig. 8(c) is visually
the same as its original one in Fig. 8(a). Its SSIM value also shows
that they are identical. To further quantitatively and graphically
show the difference between the reconstructed and original images,
a difference image is generated by subtracting the reconstructed
image from the original image pixel by pixel. The histogram of the dif-
ference image is shown in Fig. 8(c). The result shows that all pixels in
this image are zeros. This further demonstrates that the reconstructed
image is the same as the original image. This is one of advantages of
the presented PFE algorithm.

To further verify the encryption performance of the new PFE al-
gorithm, we compare it with those previouslymentioned existing al-
gorithms such as the bit-plane encryption algorithm using
exclusive-OR operations (BPE-XOR) [25], the selective bit-plane en-
cryption algorithm using the AES algorithm (SBE-AES) [26], and the
selective bit-plane encryption algorithm using the least significant
bit-plane of images (SBE-LBP) [27]. Four images selected from Fig. 7
are encrypted by these algorithms, respectively. The encrypted images
and their histograms are shown in Fig. 9. The resulting images
encrypted by the BPE-XOR, SBE-AES and SBE-LBP algorithms contain

some visual information of the original images. The intensity distribu-
tion of their corresponding histograms is inhomogeneous. However,
the encrypted images by the PFE algorithm visually look like noise im-
ages. The histograms of these encrypted images are close to uniform
distribution. This demonstrates that the PFE algorithm shows better
performance than other methods in against statistic attacks.

6.2. Correlation coefficient analysis

To further show the new PFE algorithm to be robust against statistic
attacks, we analyze the correlation between two horizontally, vertically
and diagonally neighboring pixels in the original and encrypted images.
The neighboring pixels are also called adjacent pixels [37,38].

First, we study the intensity distribution of two neighboring
pixels in the original and encrypted images by the PFE algorithm.
2048 sample pixels are randomly selected from the original image
shown in Fig. 8(a) and the encrypted images shown in Fig. 8(b),
respectively.

Fig. 10 plots the intensity distribution of these 2048 sample pixels
and their horizontally, vertically and diagonally neighboring pixels.
The top row in Fig. 10 shows the intensity distributions of pixels
from the original image. The results show that intensity values of

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
100 200 300 400

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500

50

100

150

200

250

300

350

400

450

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500

100

200

300

400

500

600
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
100 200 300 400

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500

50

100

150

200

250

300

350

400

450

(a) (b) (c) (d) 

Fig. 5. Encryption for different types of images, PD=10 and PE=15. The first row shows the original images; the second row shows the encrypted images; the third row shows the
reconstructed images. (a) The grayscale image case; (b) the MRI case; (c) the CT image case; (d) the biometrics case. This demonstrates that the PFE algorithm has capability to
encrypt different types of images and the original images can be completely reconstructed.
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neighboring pixels are equal or very close because their intensity dis-
tribution is located in or close to the diagonal line in the figures.
The neighboring pixels in the original image are highly correlated.
The bottom row in Fig. 10 plots the distribution of pixels from the
encrypted image. The results, however, demonstrate that the

neighboring pixels in the encrypted image show less correlation be-
cause their intensity values spread out and nearly uniformly distrib-
uted in the entire data range of the image.

To quantitatively assess the correlation of the neighboring pixels,
we calculate the correlation coefficient of all horizontally, vertically
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Fig. 6. Color image encryption using the PFE algorithm, PD=10 and PE=20. (a) The original color image; (b) the resized color image; (c) the processed image before the data map-
ping process; (d) the encrypted image; (e) the reconstructed image without image resizing; (f) the final reconstructed image.
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Fig. 7. Test images with different sizes. (a) Pepper, 128×128; (b) Lena, 256×256; (c) Chess, 256×256; (d) Cameraman, 256×256; (e) Barbara, 512×512; (f) Chess player,
512×512; (g) Brain, 512×512; (h) Baby, 512×512.
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and diagonally neighboring pixels in the original and encryption im-
ages. The correlation coefficient of two neighboring pixels is defined
by [39,40],

rxy ¼
N
PN
i¼1

xiyi−
PN
i¼1

xi
PN
i¼1

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
Pn
i¼1

x2i −
Pn
i¼1

xi

 !2 !
N
Pn
i¼1

y2i −
Pn
i¼1

yi

 !2 !vuut
ð15Þ

where x, y are intensity value of two neighboring pixels in image and N
is the total number of pixels selected from the image to be calculated,
and −1≤rxy≤1.

Two neighboring pixels x, y have a strong positive linear correla-
tion if the correlation coefficient rxy is close to +1. The positive values
of the correlation coefficient rxy indicate a relationship between two
neighboring pixels x, y such that the values of x increase (decrease)
while the values of y increase (decrease). However, a value of rxy
close to zero implies that there is a random, nonlinear relationship
between the two neighboring pixels [40].

Table 3 shows the correlation coefficients of two horizontally, ver-
tically and diagonally neighboring pixels in the original images
shown in Fig. 7 and the encrypted images by the PFE algorithm. The
correlation coefficients of two neighboring pixels in the original im-
ages are close to one. This shows that they have a strong positive re-
lationship. However, the correlation coefficients of two neighboring
pixels in the encrypted images are close to zeros which means they
have an extremely weak relationship.

To evaluate the relationship between the original images and their
corresponding encrypted images by the presented PFE algorithm, we
calculate the correlation coefficients of two pixels with the same loca-
tions in the original and encrypted images. They are shown in the last
column in Table 3. The results demonstrate that no linear correlation
occurs between the original images and the encrypted image since
the values of the correlation coefficients are close to zeros.

Table 4 compares the average values of the correlation coefficients
of two neighboring pixels in three directionswithin the original images
and the encrypted images by four different algorithms. The results of all
original images are close to one. The correlation coefficients of the
encrypted images are close to zero. The PFE algorithm outperforms
other encryption algorithms because the correlation coefficients of its
encrypted images are closer to zeros. This is further confirmed by the
average values of all original images and encrypted images by each
algorithm in the bottom row. This comparison further demonstrates
that a strong relationship is presented in the neighboring pixels in
the original image and a very week correlation is shown in the neigh-
boring pixels in the encrypted images by the new PFE algorithm.

6.3. Key sensitivity test

The security keys of the PFE algorithm are the combination of (1)
PD for image decomposition, (2) security key for bit-plane shuffling,
(3) PE for bit-plane encryption, and (4) the pixel value array for
data mapping. These security keys are very important for the algo-
rithm. The users have flexibility to choose same or different security
keys for both decomposition and encryption processes. The number
of the Fibonacci P-code bit-planes in the image decomposition pro-
cess depends on the length of Fibonacci P-code which differs based
on different PD values.

An ideal encryption algorithm should be sensitive with the securi-
ty key change [38]. A small change of the security key should result in
a completely different encrypted image and vice versa. To test the key
sensitivity of the PFE algorithm, we try to use different security keys
to reconstruct the original image. An example is shown in Fig. 11. A
Chess player image shown in Fig. 7(f) is encrypted by the new PFE al-
gorithm with selecting PD=3 for the decomposition process and
PE=3 for the encryption process, and reversing the order of the bit-
planes for bit-plane shuffling. We try to reconstruct the original
image by using different PD for decomposition process but keeping
the security key PE the same as that for encryption process. The re-
sults shown in Fig. 11 verify that the original image can be completely
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Fig. 8. Image encryption using the PFE algorithm. (a) The original image and its histogram; (b) the encrypted image and its histogram; (c) the reconstructed image and the
histogram of the difference between the reconstructed and original images.
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reconstructed only when the correct security keys are being utilized.
Otherwise, the reconstructed images are completely different with
the original one even if PD for the image reconstruction is slightly dif-
ferent with that for image encryption as examples in Fig. 11(c) and
(d). This demonstrates that the PFE algorithm is highly sensitive
with the security key changes.

6.4. Security key space

We use anM×N image as an example to calculate the security key
space for the PFE algorithm. We assume that the security key PD for
the decomposition process has KD possible choices. The number of

the decomposed Fibonacci P-code bit-planes is nB for a specific PD.
Since any new or existing method can be used for the bit-plane shuf-
fling process, the maximum possible changes of bit-planes are nB!
(the factorial of nB). We also assume that the possible choices of PE
for each bit-plane are KE(KE≤M!N!). The pixel value array for a spe-
cific image in the data mapping process is determined by the image
decomposition and bit-plane shuffling process. Therefore, the securi-
ty key space for the presented PFE algorithm will be,

S ¼ KDnB! KEð ÞnB≤ KDnB! M!N!ð ÞnB ð16Þ

Table 5 gives some examples of key space based on the assump-
tion of KE=10, the specific PD values (KD=1) and a 64×64 grayscale
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Fig. 9. Comparison the histograms of the encrypted images by different algorithms. The 1st column shows the encrypted images by the BPE-XOR and their histograms; the 2nd column
shows the encrypted images by the SBE-AES and their histograms; the 3rd column shows the encrypted image by the SBE-LBP and their histograms; the 4th column shows the encrypted
image by the PFE algorithm and their histograms. (a)–(d) shows the encrypted images of Pepper image shown in Fig. 7(a); (e)–(h) shows the encrypted images of Chess image shown in
Fig. 7(c); (i)–(l) shows the encrypted images of Baby image shown in Fig. 7(h); (m)–(p) shows the encrypted images of Brain image shown in Fig. 7(g).
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image. This shows that the security key space of the PFE algorithm is
sufficient large.

6.5. Brute force attack

In cryptanalysis, the brute force attack [41] is an attack model in
which the attacker tries to guess the security keys by performing an
exhaustive search for all possibilities of the security keys of the en-
cryption algorithm. Theoretically, this approach is feasible if the key
space of the encryption algorithm is limited and the attacker knows
the encryption algorithm.

Based on the results of Table 5, the security key space of the PFE
algorithm is large enough even if we choose PD to be a specific

value and only 10 possible choices for PE. As a result, the PFE algo-
rithm can withstand the brute force attack.

6.6. Noise attacks

The communication and networking channels are generally in
presence of different types of noise. To test the robustness of the
new PFE algorithm against noise attacks, it is compared with other
existing bit-plane decomposition based encryption methods. The
original image shown in Fig. 7(f) is encrypted by these encryption al-
gorithms individually. The Salt & Pepper noise with density 0.05 is
added to the encrypted images. We then try to reconstruct the
original image from these noised encrypted images. The SSIM
index is used to quantitatively evaluate the similarity between the
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Fig. 9 (continued).
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reconstructed images and the original images. The results are shown
in Fig. 12.

The original image cannot be reconstructed for the SBE-AES and
SBE-LBP algorithms as shown in Fig. 12(b) and (c). The presented
PFE algorithm and the BPE-XOR can reconstruct the original images
although they are in presence of noise, as shown in Fig. 12(a) and
(d). The SSIM result of the PFE algorithm is higher than that of the
BPE-XOR. This demonstrates that the PFE algorithm show better per-
formance than other methods for resisting the noise attacks.

6.7. Data loss attacks

Data loss attacks are to test the capability of the encryption algorithm
for tolerating thedata loss during the publicmedia transmission channels.

The Lena image in Fig. 8(a) is encrypted by the PFE algorithm and
other existing methods. The data within a 20×20 window in the cen-
ter of the encrypted images are removed by replacing them as zeros.
We then try to reconstruct the original image from these encrypted
images with data loss. The reconstructed images are then evaluated
by the SSIM index measure. The results are shown in Fig. 13.

All the reconstructed images shown at the bottom row in Fig. 13
contain most information of the original image. These algorithms
show good performance for resisting the data loss attack. In the
same condition of the data loss attack, the PFE algorithm can preserve
more visual information compared to other methods. Its recon-
structed image show more visually pleasing than others although its
SSIM value is slightly lower than the BPE-XOR. This demonstrates
that the presented PFE algorithm outperforms other methods in
against data loss attacks.
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Fig. 10. Pixel intensity distributions of two neighboring pixels at different directions in the original and encrypted Lena image in Fig. 7. The top row shows the pixel intensity dis-
tributions of the original image; the bottom row shows the pixel intensity distributions of the encrypted image. (a) The pixel intensity distribution of two horizontally neighboring
pixels, I(m, n) and I(m+1, n); (b) the pixel intensity distribution of two vertically neighboring pixels, I(m, n) and I(m, n+1); (c) the pixel intensity distribution of two diagonally
neighboring pixels, I(m, n) and I(m+1, n+1). This demonstrates that the neighboring pixels at different directions in the encrypted image show less correlation and more random
distribution in the entire data range.

Table 3
Correlation coefficients of two neighboring pixels in the original images in Fig. 7 and their encrypted images.

Image name Original image Encrypted image Correlation
between
two images

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Pepper 0.9147 0.9362 0.9351 −0.0036 −0.0016 0.0042 −0.0069
Lena 0.9401 0.9698 0.9699 −0.00087 0.0016 0.0028 −0.0019
Chess 0.9476 0.9071 0.9077 −0.00066 −0.0015 0.0028 0.000963
Cameraman 0.9343 0.9408 0.9412 0.0099 0.00081 0.005 0.000734
Barbara 0.8545 0.9539 0.9540 0.0043 0.0019 0.0045 0.000094
Chess player 0.9639 0.9475 0.9475 −0.00048 0.00053 0.0009 −0.0014
Brain 0.9866 0.9857 0.9857 −0.0013 −0.0011 0.001 −0.0033
Baby 0.9899 0.9846 0.9846 −0.00063 0.001 0.0022 0.000327
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6.8. Plaintext attacks

There are two types of plaintext attacks: the known-plaintext
attack and the chosen-plaintext attack [41,42]. In Chosen-
plaintext attack, the attacker has the flexibility to choose any useful
information as plaintext in order to deduce the security keys of the
encryption algorithm, or reconstruct the original plaintexts from
the unknown ciphertexts. If an encryption algorithm does not
change the image data, the attacker has a high probability to par-
tially or entirely break the encrypted images by using plaintext at-
tacks without knowing the encryption algorithm and its security
keys.

In the presented PFE algorithm, the image data have been chan-
ged by four steps: (1) shuffling the order of all bit-planes in shuffling
process; (2) scrambling pixel positions in the encryption process if
the PE is different for each bit-plane; (3) Combining all encrypted
bit-planes back to the gray levels using binary numeral system; (4)
Mapping the encrypted image data back into the grayscale image
data range [0, 255] by using a data mapping function in Eq. (14).
Therefore, the PFE algorithm changes both the image pixel locations
and intensity values. It has capability of withstanding plaintext
attacks.

7. Conclusion

The goal of this paper is to introduce a newapproach for improve the
security level of bit-plane decomposition based encryption algorithms.
We have introduced a new image encryption algorithm by combining
two well-known approaches: image bit-plane decomposition and the
image pixel permutation using recursive sequences. We have chosen
the p-Fibonacci sequence as an example of recursive sequences and
the Fibonacci P-code bit-plane decomposition as a decomposition case
which includes the traditional image bit-plane decomposition (i.e.
PD=0). The presented PFE algorithm, on the other hand, has demon-
strated a new application of the Fibonacci P-code and its bit-plane de-
composition for image encryption. The PFE algorithm consists of five
processes: a decomposition process, a bit-plane shuffling process, a
bit-plane resizing process, an encryption process and a data mapping
process.

Both decomposition and encryption processes are parameter de-
pendent. The security keys for both of them have a large number of
possible combinations. Any new or existing method can be used for
the bit-plane shuffling process. The algorithm changes image pixel
positions in the encryption process while changing the image pixel
values in the data mapping, bit-plane shuffling and resizing

Table 4
Comparison of average correlation coefficients of two neighboring pixels within the original and encrypted images.

Image name Original BPE-XOR SBE-AES SBE-LBP PFE

Pepper 0.9287 0.014825 0.03517 0.055918 −0.00153
Lena 0.9599 −0.00303 0.055022 0.050406 0.004461
Chess 0.9208 0.00216 0.026635 0.014548 0.001805
Cameraman 0.9388 0.001571 0.095544 0.093596 0.003426
Barbara 0.9208 −0.00307 0.024869 0.920733 0.00345
Chess player 0.9530 0.000844 0.040877 0.024003 0.000572
Brain 0.9860 −0.00063 0.205399 0.133599 0.000336
Baby 0.9864 0.001938 0.115748 0.053715 −0.0004
Average 0.9493 0.001826 0.074908 0.168315 0.001515
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Fig. 11. Image reconstruction using the same PE=3for the encryption process but different PD for the decomposition process. (a) Encrypted image, PD=3; (b) reconstructed image,
PD=3; (c) reconstructed image , PD=5; (d) reconstructed image, PD=0. This demonstrates that the original image can be completely reconstructed only when the correct security
keys are being utilized.

Table 5
Security key spaces with different PD values.

PD 0 1 2 3 –

nB 8 12 15 19 –

nB! 8! 12! 15! 19! –

KE 10 10 10 10 –

S 4.03×1012 4.79×1020 1.31×1027 1.22×1036 –
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processes. All of these ensure unauthorized user's difficulty for decod-
ing the protected images.

Finally, computer simulations have demonstrated the performance
of the PFE algorithm. Security analysis has shown the capability of

presented PFE algorithm for withstanding several common attacks
such as the brute force, statistic, noise, data loss and plaintext attacks.
The PFE algorithm can be used to encrypt images, biometrics and
videos. Our future work will extend the PFE algorithm to the 3D.
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Fig. 12. Performance comparison of different algorithms against noise attacks. (a)–(d) shows the noised encrypted images by different algorithms and their corresponding recon-
structed images. The top row shows the encrypted images with 0.05 Salt & Pepper noise added. The bottom row shows the reconstructed images from the corresponding noised
encrypted images. (a) BPE-XOR; (b) SBE-AES; (c) SBE-LBP; (d) the PFE algorithm.
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Fig. 13. Performance comparison of different algorithms against data loss attacks. (a)–(d) shows the encrypted images by different algorithms with data loss and the corresponding
reconstructed images. The top row shows the encrypted images with data removal within a 20×20 center window. The bottom row shows the reconstructed images. (a) BPE-XOR;
(b) SBE-AES; (c) SBE-LBP; (d) the PFE algorithm.
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